DirectConvolution
Documentation for DirectConvolution.
This package allows efficient computation of
\[\gamma[k] = \sum\limits_{i\in\Omega_\alpha}\alpha[i]\beta[k+\lambda i]\]
where $\alpha$ is a filter of support $\Omega_\alpha$ defined as follows (see filter of support
):
\[\Omega_\alpha = \llbracket -\text{offset}(\alpha), -\text{offset}(\alpha) +\text{length}(\alpha)-1 \rrbracket\]
.
For $\lambda=-1$ you get a convolution, for $\lambda=+1$ a wiki:cross-correlation whereas using $\lambda=\pm 2^n$ is useful to implement the undecimated wavelet transform (the so called wiki:algorithme à trous).
Use cases
These demos use data stored in the data/
folder.
julia> dataDir
"/home/runner/work/DirectConvolution.jl/DirectConvolution.jl/src/../data"
There are one 1D signal and one 2D signal:
data_1D = readdlm(joinpath(dataDir,"signal_1.csv"),',');
data_1D_x = @view data_1D[:,1]
data_1D_y = @view data_1D[:,2]
plot(data_1D_x,data_1D_y,label="signal")
data_2D=readdlm(joinpath(dataDir,"surface.data"));
surface(data_2D,label="2D signal")
Savitzky-Golay filters
This example shows how to compute and use wiki: Savitzky-Golay filters.
Filter creation
Creates a set of Savitzky-Golay filters using polynomial of degree $3$ with a window width of $11=2\times 5+1$.
sg = SG_Filter(Float64,halfWidth=5,degree=3);
SG_Filter{Float64, 11}(DirectConvolution.LinearFilter_DefaultCentered{Float64, 11}[Filter(r=-5:5,c=[-0.08392, 0.02098, 0.1026, 0.1608, 0.1958, 0.2075, 0.1958, 0.1608, 0.1026, 0.02098, -0.08392])
, Filter(r=-5:5,c=[0.05828, -0.05711, -0.1033, -0.09771, -0.0575, -2.864e-18, 0.0575, 0.09771, 0.1033, 0.05711, -0.05828])
, Filter(r=-5:5,c=[0.03497, 0.01399, -0.002331, -0.01399, -0.02098, -0.02331, -0.02098, -0.01399, -0.002331, 0.01399, 0.03497])
, Filter(r=-5:5,c=[-0.03497, 0.006993, 0.02564, 0.02681, 0.01632, 2.404e-18, -0.01632, -0.02681, -0.02564, -0.006993, 0.03497])
])
This can be checked with
julia> length(sg)
11
julia> polynomialOrder(sg)
3
1D signal smoothing
Apply this filter on an unidimensional signal:
data_1D_y_smoothed = apply_SG_filter(data_1D_y,sg,derivativeOrder=0)
plot(data_1D_x,data_1D_y_smoothed,linewidth=3,label="smoothed signal")
plot!(data_1D_x,data_1D_y,label="signal")
2D signal smoothing
Create two filters, one for the I
direction, the other for the J
direction. Then, apply these filters on a two dimensional signal.
sg_I = SG_Filter(Float64,halfWidth=5,degree=3);
sg_J = SG_Filter(Float64,halfWidth=3,degree=3);
data_2D_smoothed = apply_SG_filter2D(data_2D,
sg_I,
sg_J,
derivativeOrder_I=0,
derivativeOrder_J=0)
surface(data_2D_smoothed,label="Smoothed 2D signal");
Wavelet transform
Choose a wavelet filter:
filter = UDWT_Filter_Starck2{Float64}()
UDWT_Filter_Starck2{Float64}(Filter(r=-2:2,c=[0.0625, 0.25, 0.375, 0.25, 0.0625])
, Filter(r=-2:2,c=[-0.0625, -0.25, 0.625, -0.25, -0.0625])
, Filter(r=0:0,c=[1.0])
, Filter(r=0:0,c=[1.0])
)
Perform a UDWT transform:
data_1D_udwt = udwt(data_1D_y,filter,scale=8)
DirectConvolution.UDWT{Float64}(UDWT_Filter_Starck2{Float64}(Filter(r=-2:2,c=[0.0625, 0.25, 0.375, 0.25, 0.0625])
, Filter(r=-2:2,c=[-0.0625, -0.25, 0.625, -0.25, -0.0625])
, Filter(r=0:0,c=[1.0])
, Filter(r=0:0,c=[1.0])
), [5.25 14.671875 … -2.9493609070777893 -14.86664617061615; -3.75 -4.14453125 … -2.9738472998142242 -15.00585688650608; … ; -1.8125 12.3046875 … -2.8953346759080887 -14.590529406210408; 23.5625 22.47265625 … -2.92319642752409 -14.72818864369765], [103.53602027893066, 103.67805175483227, 103.82173991226591, 103.96707606688142, 104.11405147449113, 104.26265731197782, 104.41288469638675, 104.56472466979176, 104.7181681978982, 104.87320622312836 … 102.20866686874069, 102.33367763482966, 102.46042445488274, 102.58890068694018, 102.71909916191362, 102.85101238754578, 102.98463259707205, 103.11995178461075, 103.2569617421832, 103.39565408462659])
Plot Results:
label=["W$i" for i in 1:scale(data_1D_udwt)];
plot(data_1D_udwt.W,label=reshape(label,1,scale(data_1D_udwt)))
plot!(data_1D_udwt.V,label="V$(scale(data_1D_udwt))");
plot!(data_1D_y,label="signal")
Inverse the transform (more precisely because of the coefficient redundancy, a pseudo-inverse is used):
data_1D_y_reconstructed = inverse_udwt(data_1D_udwt);
norm(data_1D_y-data_1D_y_reconstructed)
0.0
To smooth the signal a (very) rough solution would be to cancel the two finer scales:
data_1D_udwt.W[:,1] .= 0
data_1D_udwt.W[:,2] .= 0
data_1D_y_reconstructed = inverse_udwt(data_1D_udwt)
plot(data_1D_y_reconstructed,linewidth=3, label="smoothed");
plot!(data_1D_y,label="signal")
API
DirectConvolution.BoundaryExtension
DirectConvolution.ConstantBE
DirectConvolution.LinearFilter
DirectConvolution.LinearFilter_Default
DirectConvolution.MirrorBE
DirectConvolution.PeriodicBE
DirectConvolution.SG_Filter
DirectConvolution.UDWT_Filter
DirectConvolution.UDWT_Filter_Biorthogonal
DirectConvolution.ZeroPaddingBE
Base.filter
Base.length
Base.length
Base.range
DirectConvolution.apply_SG_filter
DirectConvolution.apply_SG_filter2D
DirectConvolution.boundaryExtension
DirectConvolution.directConv!
DirectConvolution.fcoef
DirectConvolution.maxDerivativeOrder
DirectConvolution.offset
DirectConvolution.polynomialOrder
DirectConvolution.scale
DirectConvolution.ϕ_filter
DirectConvolution.BoundaryExtension
— Typeabstract type BoundaryExtension end
Abstract type associated to boundary extension.
DirectConvolution.ConstantBE
— Typestruct ConstantBE <: BoundaryExtension end
A type used to tag constant constant extension
DirectConvolution.LinearFilter
— Typeabstract type LinearFilter{T<:Number} end
Abstract type defining a linear filter.
DirectConvolution.LinearFilter_Default
— Typestruct LinearFilter_Default{T<:Number,N}
Default linear filter.
You can create a filter as follows
julia> linear_filter=LinearFilter([1,-2,1],1)
Filter(r=-1:1,c=[1.0, -2.0, 1.0])
julia> offset(linear_filter)
1
julia> range(linear_filter)
-1:1
DirectConvolution.MirrorBE
— Typestruct MirrorBE <: BoundaryExtension end
A type used to tag mirror extension
DirectConvolution.PeriodicBE
— Typestruct PeriodicBE <: BoundaryExtension end
A type used to tag periodic extension
DirectConvolution.SG_Filter
— Typefunction SG_Filter(T::DataType=Float64;halfWidth::Int=5,degree::Int=2)
Creates a SG_Filter
structure used to store Savitzky-Golay filters.
- filter length is 2*
halfWidth
+1 - polynomial degree is
degree
, which definesmaxDerivativeOrder
You can apply these filters using the
apply_SG_filter
apply_SG_filter2D
functions.
Example:
julia> sg = SG_Filter(halfWidth=5,degree=3);
julia> maxDerivativeOrder(sg)
3
julia> length(sg)
11
julia> filter(sg,derivativeOrder=2)
Filter(r=-5:5,c=[0.03497, 0.01399, -0.002331, -0.01399, -0.02098, -0.02331, -0.02098, -0.01399, -0.002331, 0.01399, 0.03497])
DirectConvolution.UDWT_Filter
— Typeabstract type UDWT_Filter{T<:Number} <: UDWT_Filter_Biorthogonal{T} end
A specialization of UDWT_Filter_Biorthogonal
for orthogonal filters.
For orthogonal filters we have: ϕ=tildeϕ, ψ=tildeψ
DirectConvolution.UDWT_Filter_Biorthogonal
— Typeabstract type UDWT_Filter_Biorthogonal{T<:Number} end
Abstract type defining the ϕ, ψ, tildeϕ and tildeψ filters associated to an undecimated biorthogonal wavelet transform
Subtypes of this structure are:
Associated methods are:
ϕ_filter
ψ_filter
tildeϕ_filter
tildeψ_filter
DirectConvolution.ZeroPaddingBE
— Typestruct ZeroPaddingBE <: BoundaryExtension end
A type used to tag zero padding extension
Base.filter
— Methodfunction filter(sg::SG_Filter{T,N};derivativeOrder::Int=0)
Returns the filter to be used to compute the smoothed derivatives of order derivativeOrder
.
See: SG_Filter
Base.length
— Methodlength(c::LinearFilter)::Int
Returns filter length
Base.length
— Methodfunction length(sg::SG_Filter{T,N})
Returns filter length, this is an odd number.
See: SG_Filter
Base.range
— Methodrange(c::LinearFilter)::UnitRange
Returns filter range Ω
Filter support of a filter α is defined by Ω = [ - offset(α), length(α) - offset(α) - 1 ]
DirectConvolution.apply_SG_filter
— Methodfunction apply_SG_filter(signal::Array{T,1},
sg::SG_Filter{T};
derivativeOrder::Int=0,
left_BE::Type{<:BoundaryExtension}=ConstantBE,
right_BE::Type{<:BoundaryExtension}=ConstantBE)
Applies an 1D Savitzky-Golay and returns the smoothed signal.
DirectConvolution.apply_SG_filter2D
— Methodfunction apply_SG_filter2D(signal::Array{T,2},
sg_I::SG_Filter{T},
sg_J::SG_Filter{T};
derivativeOrder_I::Int=0,
derivativeOrder_J::Int=0,
min_I_BE::Type{<:BoundaryExtension}=ConstantBE,
max_I_BE::Type{<:BoundaryExtension}=ConstantBE,
min_J_BE::Type{<:BoundaryExtension}=ConstantBE,
max_J_BE::Type{<:BoundaryExtension}=ConstantBE)
Applies an 2D Savitzky-Golay and returns the smoothed signal.
DirectConvolution.boundaryExtension
— FunctionboundaryExtension(β::AbstractArray{T,1},
k::Int,
::Type{BOUNDARY_EXT_TYPE})
Computes extended boundary value β[k]
given boundary extension type BOUNDARY_EXT_TYPE
Available BOUNDARY_EXT_TYPE
are:
ZeroPaddingBE
: zero paddingConstantBE
: constant boundary extension paddingPeriodicBE
: periodic boundary extension paddingMirrorBE
: mirror symmetry boundary extension padding
The routine is robust in the sens that there is no restriction on k
value.
julia> dom = [-5:10;];
julia> hcat(dom,map(x->boundaryExtension([1; 2; 3],x,ZeroPaddingBE),dom))'
2×16 adjoint(::Matrix{Int64}) with eltype Int64:
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 1 2 3 0 0 0 0 0 0 0
julia> hcat(dom,map(x->boundaryExtension([1; 2; 3],x,ConstantBE),dom))'
2×16 adjoint(::Matrix{Int64}) with eltype Int64:
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3
julia> hcat(dom,map(x->boundaryExtension([1; 2; 3],x,PeriodicBE),dom))'
2×16 adjoint(::Matrix{Int64}) with eltype Int64:
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1
julia> hcat(dom,map(x->boundaryExtension([1; 2; 3],x,MirrorBE),dom))'
2×16 adjoint(::Matrix{Int64}) with eltype Int64:
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
3 2 1 2 3 2 1 2 3 2 1 2 3 2 1 2
DirectConvolution.directConv!
— MethoddirectConv!
Computes a convolution.
\[\gamma[k]=\sum\limits_{i\in\Omega^\alpha}\alpha[i]\beta[k+\lambda i]\]
The following example shows how to apply inplace the [0 0 1]
filter on γ[5:10]
julia> β=[1:15;];
julia> γ=ones(Int,15);
julia> α=LinearFilter([0,0,1],0);
julia> directConv!(α,1,β,γ,5:10)
julia> hcat([1:length(γ);],γ)
15×2 Matrix{Int64}:
1 1
2 1
3 1
4 1
5 7
6 8
7 9
8 10
9 11
10 12
11 1
12 1
13 1
14 1
15 1
DirectConvolution.fcoef
— Methodfcoef(c::LinearFilter)
Returns filter coefficients
DirectConvolution.maxDerivativeOrder
— Methodfunction maxDerivativeOrder(sg::SG_Filter{T,N})
Maximum order of the smoothed derivatives we can compute using sg
filters.
See: SG_Filter
DirectConvolution.offset
— Methodoffset(c::LinearFilter)::Int
Returns filter offset
Caveat: the first position is 0 (and not 1)
DirectConvolution.polynomialOrder
— Methodfunction polynomialOrder(sg::SG_Filter{T,N})
Returns the degree of the polynomial used to construct the Savitzky-Golay filters. This is mainly a 'convenience' function, as it is equivalent to maxDerivativeOrder
See: SG_Filter
DirectConvolution.scale
— Methodscale(λ::Int,Ω::UnitRange{Int})
Range scaling.
Caveat:
We do not use Julia *
operator as it returns a step range:
julia> r=6:8
6:8
julia> -2*r
-12:-2:-16
What we need is:
julia> r=6:8
6:8
julia> scale(-2,r)
-16:-12
DirectConvolution.ϕ_filter
— Methodϕ_filter(c::UDWT_Filter_Biorthogonal)
Returns the ϕ filter